Towards Effective Machine Translation For A Low-Resource Agglutinative Language: Karachay-Balkar

Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Producer
Director
Performer
Choreographer
Costume Designer
Music
Videographer
Lighting Designer
Set Designer
Crew Member
Funder
Rehearsal Director
Concert Coordinator
Moderator
Panelist
Alternative Title
Department
Haverford College. Department of Computer Science
Tri-College (Bryn Mawr, Haverford, and Swarthmore Colleges). Department of Linguistics
Type
Thesis
Original Format
Running Time
File Format
Place of Publication
Date Span
Copyright Date
Award
Language
eng
Note
Table of Contents
Terms of Use
Rights Holder
Access Restrictions
Open Access
Tripod URL
Identifier
Abstract
Neural machine translation (NMT) is often heralded as the most effective approach to machine translation due to its success on language pairs with large parallel corpora. However, neural methods produce less than ideal results on low-resource languages when their performance is evaluated using accuracy metrics like the Bilingual Evaluation Understudy (BLEU) score. One alternative to NMT is rule-based machine translation (RBMT), but it too has drawbacks. Furthermore, little research has been done to compare the two approaches on criteria beyond their respective accuracies. This thesis evaluates RBMT and NMT systems holistically based on efficacy, ethicality, and utility to low-resource language communities. Using the language Karachay-Balkar as a case-study, the latter half of this thesis investigates how two free and open-source machine translation packages, Apertium (rule-based) and JoeyNMT (neural), might support community-driven machine translation development. While neither platform is found to be ideal, this thesis finds that the Apertium is more conducive to a community driven machine translation development process than JoeyNMT when evaluated on the criteria of efficiency, accessibility, ease of deployment, and interpretability.
Description
Subjects
Citation