Abstract:
The postpartum period is a time of high vulnerability for females to develop depression. Not only does postpartum depression significantly hinders the motivation and enjoyment that a mother feels in her new role, but also the development of the offspring, doubling the impact of this unique affective disorder. Oxytocin, a hormone involved in birth, maternal behavior, depression, and anxiety may help to untangle the link between postpartum hormonal levels and the occurrence of postpartum depression. The present study examined oxytocin receptor plasticity in efferents of the paraventricular nucleus, the main source of central oxytocin, in an animal model following a hormone-simulated pregnancy. Estrogen-withdrawn females exhibited a significantly greater density of oxytocin receptors in the dorsal raphe nuclei and there were no significant differences in receptor density between hormonal treatment groups in other efferents examined. Estrogen-withdrawn females also displayed higher levels of anxiety-like behavior than estrogen-sustained animals in the Elevated Plus Maze. Ultimately, the present study aimed to understand the role of oxytocin signaling in postpartum mood disturbances and how oxytocin may meet the demand as a novel, targeted treatment for postpartum depression.