ΔFosB Induction in D1 Versus D2 Dopamine Neurons in the Nucleus Accumbens Following a Hormone-Simulated Pregnancy: An Exploratory Study
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Producer
Director
Performer
Choreographer
Costume Designer
Music
Videographer
Lighting Designer
Set Designer
Crew Member
Funder
Rehearsal Director
Concert Coordinator
Advisor
Moderator
Panelist
Alternative Title
Department
Haverford College. Department of Psychology
Type
Thesis
Original Format
Running Time
File Format
Place of Publication
Date Span
Copyright Date
Award
Language
eng
Note
Table of Contents
Terms of Use
Rights Holder
Access Restrictions
Open Access
Terms of Use
Tripod URL
Identifier
Abstract
Postpartum mood disorders (PMD) are a worldwide health concern, yet the neurobiological etiology is still widely unknown. In the present study we replicated the hormone-simulated pregnancy method developed by Liisa Galea in a novel transgenic mouse model. This approach allowed us to measure long-term genomic changes in dopaminergic plasticity in medium spiny neurons (MSNs) within the nucleus accumbens (NAc) through the transcription factor ΔFosB. We used 16 ovariectomized female transgenic mice that had fluorescent reporter molecules coupled to either D1 or D2 receptor-containing neurons; this allowed us to differentially visualize the activity of ΔFosB in each of the neuronal subtypes following a hormone-simulated pregnancy. We found a significant increase in the expression of ΔFosB in D2-MSNs in the NAc core of hormone-withdrawn animals relative to hormone-sustained animals. These neurobiological changes did not correspond with measures of anxiety in either an Elevated Plus Maze or Open Field Test. Furthermore, we found no significant changes in ΔFosB expression in D2-MSNs in the NAc shell nor in D1-MSNs in the NAc core and shell. By further understanding the influence that hormonal changes throughout pregnancy have on neurological systems, we can identify the systems that may be involved in pathological cases to develop better and more direct treatment and diagnosis options for PMD.