Spectral and Hydrodynamic Modeling of X-Ray Photoionization Experiments

Date
2008
Journal Title
Journal ISSN
Volume Title
Publisher
Producer
Director
Performer
Choreographer
Costume Designer
Music
Videographer
Lighting Designer
Set Designer
Crew Member
Funder
Rehearsal Director
Concert Coordinator
Moderator
Panelist
Alternative Title
Department
Swarthmore College. Dept. of Physics & Astronomy
Type
Thesis (B.A.)
Original Format
Running Time
File Format
Place of Publication
Date Span
Copyright Date
Award
Language
en_US
Note
Table of Contents
Terms of Use
Full copyright to this work is retained by the student author. It may only be used for non-commercial, research, and educational purposes. All other uses are restricted.
Rights Holder
Access Restrictions
Terms of Use
Tripod URL
Identifier
Abstract
We have extensively modeled a neon photoionization experiment on the Z machine at Sandia National Laboratories. Using a suite of modeling codes, we have reproduced the experimental environment and simulated the physical conditions inside the neon plasma. We have matched a synthetic spectrum to the absorption spectrum taken during the experiment. Analyzing the spectra by measuring equivalent widths of lines and plotting them on a curve of growth, we have determined that the ionization balance of 1 % Ne VIII, 95% Ne IX, and 4% Ne X for the laboratory spectrum nearly matches the simulated ionization balance of 1 % Ne VIII, 91 % Ne IX, and 8% Ne X. We have found our simulated plasma to be slightly overionized in comparison to the neon in the experiment, though the simulated physical conditions can still be matched to features in the absorption spectrum. Our analysis also indicates that photoionization is a necessary ingredient in the ionization of the neon gas cell plasma. With more refined spectral analysis t echniques, we can provide astronomers with information that they can use to better interpret spectra of photoionized astrophysical objects.
Description
Subjects
Citation