Browsing by Author "Falk, Casey"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAuditing Deep Neural Networks and Other Black-box Models(2016) Falk, Casey; Friedler, SorelleIn this era of self-driving cars, smart watches, and voice-commanded speakers, machine learning is ubiquitous. Recently, deep learning has shown impressive success in solving many machine learning problems related to image data and sequential data - with the result that people are frequently impacted by deep learning models on a daily basis. However, how do we judge if these models are fair, and how do we discover what information is important when making a decision? And as APIs become ever-more common, how do we determine this information if we do not have access to the model itself? We developed a novel technique called Gradient Feature Auditing which gradually obscures information from a data-set and evaluates how a model's predictions change as yet more of that information is obscured. This allows a deeper investigation of what information and features are actually used by machine learning models when making predictions. Throughout our experiments, we apply Gradient Feature Auditing on multiple data-sets using several popular modeling techniques (linear SVMs, C4.5 decision trees, and shallow feed-forward neural networks) to provide evidence that Gradient Feature Auditing indeed affords deeper insight into what information a model is using.